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ABSTRACT

Reflection and transmission of electromagnetic plane
waves at the surface of parallel-plate metal structures are
studied both theoretically and experimentally, This report,
Part 1 of the study, is the theoretical presentation; Part II
will deal with apparatus and experimental findings. The
study is confined to rays with polarization parallel to the
edges of the plates and a plane of incidence perpendicular to
these edges.

The theory of Carlson and Heins is extended and made
amenable to numerical predictions. Tables and graphs are
provided for the coefficients pertaining to an air-metal-plate
medium interface. A methodisdeveloped for the analysis of
reflecting and transmitting properties of slabs, or media of

-finite depth.

PROBLEM STATUS

This is an interim report; work on this problem is
continuing.

AUTHORIZATION -

NRL Problem No. R09-39R
NR 509-390

iv




f(w)
k
K, (w),K_(w)
4 n
r
R
+ R

S(y)

U(w)

V(w)

W(w)

LIST OF SYMBOLS

Explanation
Plate separation (Fig. 1)

Thickness (depth) of slab

A function defined by Eq. (7)

Phase propagation constant in free space 27/

Functions defined by Egs. (9) and (15)
Index of refraction

Reflection coefficient of an interface
Reflection coefficient of a slab
Remainder of an infinite series, Eq. (83)
Scattering matrix Eq. (49)

Remainder of an infinite series Eq. (93)
Transmission coefficient of an interface
Transmission coefficient of a slab

A complex function defined by Eq. (12)
x sin 6 |

A complex function defined by Eq. (10)
A complex variable

A complex function defined by Eq. (11)
2a/) (Also used as a coordinate)

nx (Also used as a coordinate)
Coordinate

Angle of stacking (Fig. 1)

Phase delay

PEF NP

Page first used

3 i
15 ;

O b 3 O

15
23
17 | !
25

15

26

21
24

15




i

Symbol
A

€
n

7(s)

LIST OF SYMBOLS (Cont.)

Explanation

Page first useq

Defined by Eq. (13) 7
Defined by Eq. (14) 7
£, ("0 23
Angle of incidence 4
Angle of refraction 4
Arc'cosm = arc sin A/2a 12
Angle between the surface normal and
the direction of the first order diffracted
beam 11
Phase propagation constant i;x the ﬁxedium =nk 4
Wavelength (in free space) . 3
Magnitude of the reflection coefficient 18
Phase of the reflection coefficient | 9
Magnitude of the transmission coefficient 18
Phase of the transmission coefficient 8
P+ 0s 20
Angular frequency 6

vi




PHYSICAL OPTICS OF METAL-PLATE MEDIA;
PART 1, THEORETICAL CONSIDERATIONS

INTRODUC TION

This report deals with certain aspects of wave propagation in the presence of the

parallel-plate metal structures employed in microwave lens design. These structures

~ consist of a set of parallel, equidistant conducting plates. They are so oriented that the
polarization of the electric vector of the incident waves is parallel to the plates and the
plate separation is chosen between one-half and one wavelength, When this is the case

- the phase velocity within the metal-plate structure is greater than in free space. This
fact has been utilized by Stiitzer,»*" Kock,® and others for the construction of microwave
lenses. The lenses so constructed are unusual in their appearance because the metal-
plate medium has an effective index of refraction less than one, consequently convex lenses
are-diverging and concave ones converging. : ’

-The geometrical optics of metal-plate media has already been thoroughly explored.
The present study is directed toward the exploration of the physical-optical aspects of
these media. ‘ .

Articles and reports dealing with microwave lens design indicate that the temptation
to treat metal-plate media formally as ordinary dielectric materials has been great. While
most relations of geometrichl optics can be carried over formally from dielectrics to
metal-plate media, this is not true of the relations of physical optics. The different be~
havior of-the latter media is in a large part caused by the fact that energy is stored at the
boundary surface of the metal-plate medium while no such storage takes place at the sur-
face of the dielectric.,

The objective of this study is to examine the reflecting and transmitting properties of
Wetal.plate media. The ground-work in this field has already been laid by other investiga-
S, In 1939 Stitzer® obtained approximate expressions for the reflection and transmission
Coefficients for normal incidence. The wave constructions which led to these coefficients,
Owever, do not satisfy the proper boundary conditions, Several years later Carlson and
Heins? attacked the problem anew. They solved the field problem rigorously for any angle
of incidence, requiring only that the plane of incidence be perpendicular to the metal plates,
Y the use of the Fourier transformation, Carlson and Heins obtained analytic expressions
Or the reflection and transmission coefficients which are valid when the incident radiation
Subject to a number of restrictions,

Or An experimental program has been initiated at the Naval Research Laboratory and at
€gon State College with the purpose of testing the predictions of the theory of Carlson
:nd Heins, The experimental program and its results are the subject of a separate report.
e Cursory examination of the work of Carlson and Heins is sufficient to convince one thata
Ousiderable amount of work is required to bridge the gapbetween the mathematical formalism
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2 NAVAL RESEARCH LABORATORY

of their theory and the variables accessible to the experimenter. The theory predictg
reflection and the transmission of a plane electromagnetic wave on a single bounda,rythe
face separating free space and a metal-plate medium extending (in depth) to infinity Sur,
case of a medium of finite depth, the reflection from the “back” surface combines W1 N

at the front surface. An observer can observe only the combinatiofi of these reflect, ta:
unless he can eliminate all reflection at the back surface by the introduction of p,oons
absorbing materials, In an experimental test of the theory it is then necessary eitherp::
compute reflection and transmission coefficients for media of finite depth from the g
surface coefficients, or it is necessary to eliminate back surface reflections by the yge
absorbing materials. Both methods have been employed, the first one primarily at the
Naval Research Laboratory, the second at Oregon State College.

The first method requires the knowledge of the phase as well as the magnitude of the
coefficients associated with a single surface transition. While phase relations betweeq
incident, transmitted and reflected waves are trivially simple for ordinary losslesg dielec
tric materials, quite the opposite is true of metal-plate media., The expressions for phas;
relations derived by Carlson and Heins are of the form of infinite series; their numerieq)
evaluation presented a number of difficulties. In view of this fact, the technique of thecop
putation is described in this report and tables of the coefficients computed are appendeq, )

Expressions for the reflection and transmission coefficients were derived by Carlses
and Heins for the case when to every incident beam corresponds a single reflected beam,
This condition limits the angle of incidence below a critical value determined by the ratio
of wavelength to plate separation. When the critical value is exceeded, the edges of the
plates act as a grating and diffracted beams arise. By extending the theory of Carlson
and Heins, expressions have been found for the reflection and transmission coefficients in
the presence of a diffracted beam. Tables and graphs have been prepared to show the en.
ergy distribution between various beams. The tables are not as extensive as might be de-
sired because of limitation in time and manpower. Nevertheless those angles of incidence
which are of practical value are covered. -

Having obtained the basic coefficients pertaining to a single air-metal-plate medium
interface it became necessary to consider the problem of composing reflections originating
at the front and back surfaces of a slab, or medium of uniform depth. This is analogous to
the well-known problem of reflection and transmission of transparent sheets. However,
the unusual phase relations prevailing in the case of metal-plate media make certain con-
siderations necessary which are not required in the case of ordinary dielectric materials,
For this reason, a theory of the metal-plate slabs was included in this report. It is devel-
oped along the lines of the modern theory of discontinuities in transmission lines introduced
by J. Schwinger. '

The problems discussed in this report are less general than those of Carlson and Heins
in the following respect: It is assumed here that the parallel plates are so stacked that the
plane containing their edges is perpendicular to the plates, while Carlson and Heins permit
this plane to make any angle with the plates, Perhaps the most serious limitation of this
work is that it had been confined to a plane of incidence perpendicular to the edges of the
plates. This is the plane of the maximum constraint from the point of view of wave propa-
gation within the medium. The examination of other planes of incidence and other orien-
tations of polarization is in progress. o
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Terminology and Elementary Properties

A parallel.plate or metal-plate medium is a part of space containing a number of ;
parallel, equidistant, highly conducting sheets. Such a structure is shown in Figure 1 with
the plates perpendicular to the plane of the paper,
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Fig. 1 - Parallel plate medium (side view)

~ It is assumed that the plates extend to infinity forward, back, and to the right, thatthe
edges of the plates are straight and perpendicular to the paper, that the plates are stacked
uniformly as shown in Figure 1, Moreover, to avoid the complications caused by edge ef-
fects, it is assumed that there are many plates and that the investigation is confined to the
center part of the structure so that one plate is not distinguished physically from the adja-
cent ones by virtue of its position. In mathematical parlance this assumption is expressed
by postulating an infinite number of plates, located at the points satisfying the conditions -
Texcotana, x = ma, m =0, +1, +2, ... . The plane through the edges of the planes iscalled
the surface of the medium, ,

The parameters determining the electrical properties of the medium are the plate sep-
aration a, the plate thickness t, the conductivity ¢ and the shape of the surface of the medium
determined by the angle of stacking o. The propagation of electromagnetic waves withinthe
Medium is determined by a and o; the effect of the latter being usually negligible. Surface
Phenomena, such as reflection of an incident wave will depend on «a and t also.

Metal-plate media are generally intended for use in a well-defined frequency region
and the parameters of the structure are so chosen that t is very small compared to the
Wavelength A, a is of the same order as A ando is that of ordinary metals (5 x 107 mhos
Weter), In first approximation one always assumes t = 0 and o =w, To avoid complications,

8 study is restricted to the case a = 90°.

'}
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Only those electromagnetic waves will be considered whose electric vector is Paralje
to the metal plates. The plate separation is generally so chosen that at the given freque !
only one mode of oscillation is propagating in the medium. This condition requires =y

2a

1t is well-known that there is no propagation within the medium for A > 2a and that for
X < 2a the ratio of the phase velocity in free space to the phase velocity in the medium ig

"=‘/IT(;’%?- )

This quantity is called the index of refraction of the medium. Let k be the propagation
constant in free space; k = 27/), and let x = hk be the corresponding quantity in the mediug,
Equation (2) is equivalent to - g

K =+ (%Y . ' (3)

The value of n determines the propagation within the plates and also the geometrica}
optics of the rays incident on the surface of the medium. Rays incident in a plane paralle]
to that of the plates are not constrained, while rays incident in other planes are all con.
strained by the plates. The classical argument pertaining to the propagation of phase
fronts shows that unconstrained rays follow Snell’s law, When rays are incident in the
plane of maximum constraint, the (x,z) plane, the Poynting vector in the medium is always
directed along tRe z-axis. Still one might speak of refraction at the surface in terms of
equiphase surfaces. Consider the case when the plates are not staggered; i.e., a = 90°,
and let the radiation be incident at an angle § as shown in Figure 2, The points Py, P,,
P_,, etc. will lie on a discontinuous equiphase sur‘face which is approximated by the plane
shown in dotted lines. Let the inclination of this plane be g;. Elementary calculation
gives

sin 6

=N, (4)
tan ¢ r f
Incident x -
phase front Refracied
\ phase front
\ \\
\\ T
\ Fe 3—
\

Fig. 2 - Refraction in the plane of constraint
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REFLECTION, TRANSMISSION, AND THE GRATING EFFECT

When a plane wave is incident on the surface of a metal-plate medium, currents are
induced on the plates. In addition to waves set up in the medium there will be reflected or
scattered waves in free space. Analogy with dielectric materials leads one to expect a
transmitted and a reflected plane wave. However, the analogy is an incomplete one since
the situation at the surface of the metal-plate medium differs in many respects from that
encountered at the surface of dielectrics.

First of all, the electric field at the surface of a metal-plate medium is not uniform,
but a periodic function of position, Therefore, transmitted and reflected waves cannot be
uniform plane waves as they are in the case of dielectrics. Only at a distance from the

surface might one expect approximately uniform plane waves.

There is never more than one reflected wave from a plane dielectric surface, but the
edges of the metal-plates act as a grating and for a single plane wave incident at an angle
8, there will be reinforcement of scattered waves in all directions gg which satisfy the

relation
sin9+sines=m%,m=0,*1,*2,... . 5)

There will always be the beam s = -8 corresponding to m = 0. This is the case of com-
mon (specular) reflection in geometrical optics, There might be other beams, provided
that the elements of the grating are sufficiently far apart. However, when

4 : A
1+1sin 61< 5 (6)

then (5) cannotbe satisfied for any value of m other than zero; thus there is only one re-
flected beam. Since a = 90° has already been assumed, one may, without further loss of
generality, restrict himself to positive angles of incidence and omit the absolute value
signs in (6).

The electromagnetic disturbance caused by the incident plane wave at the surface of
the medium results in oscillations in the space between the plates. The latter act as
waveguides of uniform width and infinite height. They permit the passage of an oscillation
of a given frequency in several modes propagating with different velocities, In all appli-
cations the spacing a is chosen to satisfy the inequality (1), so that in the contemplated
frequency range only the fundamental mode is propagated. All other modes excited at the
edges are attenuated. The energy associated with these nonpropagating modes is stored
In the part of the space surrounding the edges. The presence of this energy is responsi-
ble for the phase shift in transmission through the surface of the metal-plate medium,. If
One overlooks the field present in these higher modes he is led to erroneous boundary con-
ditions in the process of joining the incident, reflected and propagated waves by means of
a continuity argument, These conditions in turn lead to incorrect reflection and trans-
Iission coefficients.®

A rigorous theory of metal-plate media is quite difficult and has not yet been fully
developed, Carlson and Heins? solved the problem for the case of a plane wave incident
the plane of maximum constraint assuming infinite conductivity and zero plate-thickness.,
eir mathematical procedure is far too complicated for reproduction here. Only the
Principal results will be stated for the special case a = 90°,

x
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THE RESULTS OF CARLSON AND HEINSt .
- After formulating the electromagnetic field problem in terms of an integr

¢ al y
of the Wiener-Hopf type, Carlson and Heins proceed to solve this equation by theel?;: t.}?n

the Fourier transform. The crucial step in the solution requires the splitting of 5 comp}

transcendental function in two parts; one of which has no zeros or poles in the upper hﬁf‘

?flane, thge g)ther is similarly behaved in the lower half-plane, The function in questioy 13‘
or a= 90 .

- sin a V¥ - w*
i) = W - W’Eos a?i’ - w* - cos (ak sin O)j @

It is written in the form !

tw) = ——U’é;(‘,?';, \ . ®)

where K_(w) has no poles or zeros below the line C in Figure 3 and K (w) has none aﬂo&a,

No zeros and singularities of K in This region
(above the curve C)

9 L &—=>O = Real QXis

Fig. 3 - The plane w

fror a complete understanding of the mext two sections, -it is helpful to read the article
of Carlson and Heins.® Im order to facilitate & comparative reading, the convention of
using a time dependence in the form' of e~39% pas been retained in this section., (onsequent-
ly, the reflection coefficient is written in the form of r = lr] €? . To carvert to the
standard notation used in other parts of this report it is only necessaory to replacei by ~j.
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The functions are properly normalized to insure desired behavior at infinity. The actual
form of K.(w) is ]

_ 7 w+ikcos 8 V(w) Wiw) {aw (9)
KW =3 Wi« Uw) %P { x n2- 1)}‘
where
- I law law  ak sin 8 (10)
vew) = 1T, @n - 21m) €XP@m *  2m J°
- iaw iaw ak sin @
w(w) = 11, (An +m) “2m ¥ " 2m ’ (11)
R
o =, 6, -22) e {22), @
with N
s ak sin 9)’ (gk; )’ 13
An - (1 T 2w ~ \2m/ ? (13)
2 _ ak\?
e =1- (ﬁ) . (14)

In order fo insure proper behavior of U, V and W_in the upper _half-plane, the sign of
4, and € ; has to be determined as follows: When A} 20, then A 20, when A% < 0, then
1A, > 0. On account of the restriction expressed by (1), €, is always positive and the cor-
rect choice is e > 0. The numerator of (8) then takes the form: .

- U(-w) ia
K.-(w) =iﬂl - S v V(_w)v;”(_w) exp {—ﬂ—“’ (In2- 1)} . (15)

Assuming an incident field of the form Ex = 0, Ez = 0, Ey = ¢jp¢ = €xp {ik(x sin 6 +
Z cos 6)} the total electric field is represented by the following equation:

iwz
o (16)
K, (w)(w -k cos 6) sin a k- w

1 K,(k cos 9) I(w, x) e
#(x, z) = ¢inc + o7l .[c +

where

Kw,x) = [sin(x- n'a-a) Vk’-w’ - eika sin 6 sin(x-n’a) VE’-W’} elnka sin 8 (17)

p—p——
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and n’ is the largest integer not exceeding x/a. This is the special case (a = 90 of
principal result of Carlson and Heins (p. 325). The path of integration is shown mn! N

The reflected and transmitted fields are obtained from (16) evaluated for negatiye
positive values of z respectively. One can show that the behavior of the integrand in (1:&
is such that the curve C can be closed by a large semicircle in the upper half-plane for )
positive values of z and by a similar semicircle in the lower half-plane for negative

_of z, The contributions from these circular arcs vanish as their radii tend to infini ey
is therefore possible to evaluate the integral in (16) by means of the theorem of reSid;xes
the poles of the integrand being w,, = k cos 6, the zeros of K, (w) and those zeros of !
sin a Vk? - w° which are not cancelled by the numerator of the integrand.

In the case of the transmitted wave, z is positive, the path of integration is closeq in
the upper half-plane, therefore only poles situated above C need to be considered, Since
K,(w) has no zeros in this region, the poles are at wg = k cos 6§ and at such points Wi in
the upper half-plane which satisfy the equation a ¥ k? - wm2 = mn, where m is a positive
integer, The restriction of single mode propagation within the medium, expressed by tye
inequality (1), has the consequence that all wypy with m> 1 are pure imaginary, while
wy = (k? -1 /a®) Y2 =k, For m > 1 it is then proper to write wy, = ip,, where p,_ >0,
The expression obtained by evaluating the residue at wp, will contain the factor e-pmz
indicating a nonpropagating wave. Only real poles generate progagating waves. In fact,
the residue at w,, generates -¢jn¢, the one at w = k generates t elZ sin (rx/a), where

ein'ak sin @ . . (19)

The factor ein’ak sin 8 takes into account the phase delay from one channel of the medium
to the next. It is sufficient to concentrate on a particular pair of plates and to examine
only the field between them. In this case one may set n' = 0 and simplify the expression
of the transmission coefficient to:

t = |t it 7 K, (k cos6) 14elkasing "
AT 9 () kcos - « )

»

Assuming that all deltas defined by (13) are real, one obtains after a lengthy calculation:}

s 3
272 K cos 6 _ 2% cos 6

ltl'—'kcoseut' cos 6+n° (20
where n is the index of refraction defined in (2).
/
For the phase of the transmission coefficient (19) yields readily:
T'=% ak sin 6 + arg K (k cos 0) - arg K (k), (21)

T Actually Carlson and Heins used a & with o positive imaginary part, integrated along the
real axis and then permitted Im k to approach zero. The location of their path of integra-
tion with respect to the singularities is identical to that shown in Figure 3.

1 See dppendix, Egs. (44) and (64).

|
|
!
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provided cos 6 > p which is usually the case, The first term in this expiession is due to
the location of the origin, It disappears when the origin is shifted to a point half-way be-
tween the edges, such as Q in Figure 2.

The reflection coefficient is obtained by evaluating the integral in (16) for large nega-
tive values of z. In this case the path of integration is closed in the lower half-plane.

If the quantities A j,, defined by (13) are all real, then, apart from w = -k cos 0, K.(w)

has only pure imaginary roots in the lower half-glane. -The latter generate attenuated waves

as was shown before. The roots of sin a - w* in the lower half-plane are cancelled by
the poles of K, (w), therefore there is one propagating reflected wave, It is of the form:

. r eik(x sin @ - z cos 6) | (22)
with
4
_ ip" K, (k cos 8) 23
reirle” = -5 Cos 6 KI -k cos 0) (23)

where K, is dK,/dw. Equation (23) gives:
p’ = arg K+(k cos 0) - arg K;(-k cos 9) + 7. (24)

When the deltas in the functions V and W are all real, Iri can be computed by elemen-
tary means. In this case:t

k cos 0)
K;(-k cos 6)

and hence from x= hk and equation (23) follows

_ -k cos 6 + _
= 2k cos @ Im ’ (25)

_cosf-n
Ir=Ceso+n’ (26)

The absolute value sign has been omitted on the right because the restriction on the
deltas implies cos 6 > n. This will be shown immediately. First, it is proper to examine
e meaning of the restrictions A} 2 0 for all values of n. For negative values of n, A}, is
Positive for every angle of incidence 6 (in the first quadrant). This is a consequence of
cg%dition (1), imposed to insure single mode propagation between the plates. The condition
n = 0 for positive n is, however, more restrictive. Since A}, < AT4,, only A? needs to be
€xamined, The latter is not negative if, and only if, !

_ka > ka
1-5;sin6 250, (27)
or
A_2m>, (28
2 a-1+sin0. )
\—
'Thc f ;
IV{-W aCtgrs resulting from the infinite products cancel out, since for any real number w ,
o) | = |ytwo) |, |W(-wo)| = |W(wo)| when all deltas are real and | Utmwol | = [U(wo) | bel

€ous, the ¢

Tenerq; casbsilons are always real on account of condition (1). The evaluation of K, in the

e is discussed in the Appendix.

TRt LT R
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~ This is the inequality (6) derived from the elementary grating theory, It resti'icts the
} angle of incidence 6 to such values which permit only a single reflected beam, Equﬂtion.g
’ (20) and (26) are valid only when ¢ satisfies this condition. The limiting value of 0 for
which the equality sign holds is shown in Figure 4 as a function of 2a/A.
s0r N
sor [\ N
\\ T
t T0* —
L‘N
€0¢ -
. Ditfrocted beam present
. ™ 1]
50 ‘\\ —
5 { 840' ‘\\\‘ ]
a f Regioh of singlé retlecton ] m
i 30° —
| 20°
10° .
[+ 1] " .3l 4 ﬁ L i '51 N S Y BP P Y 1 n { N
LO3 o ) . 120 125 130 138
1 a , .
: o
i
' Fig. 4 - Limiting valve of angle of incidence for single reflection
. A
9L = arc sin (-;- —1)
The inequality cos 6 > n now follows readily. From (28):
- LY .S 29
1-sin6>2-2=21-2). (29)
il For any positive 6
ol 4 . 1+sing>1=24% (30)
t ‘ and according to (1), 2 >1 + 2/2a, therefore
S , 1+ sin 6 >4(1+ 2/2a). (31)

; The desired relation is the product of the inequalities (29) and (31).

il MULTIPLE REFLECTION

It is worth while to extend the theory of Carlson and Heins to cover the case of multiple
reflected beams. The case of most importance is the one of two reflected beams, This

-
o o P PP i < e e L b s
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corresponds to an angle of incidence 6 for which A} <0, but A3 > 0. According to-(13)

A2 = (%)’ {1 - (3—3; - sin 9)2 } (32)

Clearly -A? <(ak/27)? therefore whenever A} < O there is an angle §’ such that

A =i 4;% cos 6°, - (33)
From (32) then follows
+ sin e'=:—l’; -sing. (34)

It is proper to restrict oneself to the use of the + sign in (34) since (33) does not specify

the sign of 6’. Then
sin 8 + sin ¢’ = (35)

2k
o |

The function K, (w) now has an additional real root, since the factor A, -iaw /27 van~
ishes when w = -k cos 8’. When the presence of this real pole is taken into account in the
evaluation of the integral in (16), a new propagating wave is found in the region'z< 0. In
fact, from (17) and (35) follows I(-k cos ', x) = -sin(ak sin ¢’) exp(-ikx sin ¢’) and the
contribution of the pole is r® exp {-ik (x sin & + z cos 9'}, where

I K+(k cos 8) 1
- K (-k cos 6°) k(cos 6 + cos §")

(36)

This is the first order diffracted beam; it propagates at an angle §’ with the surface normal.

The quantities necessary for the calculation of |t|, |r| and |r® | are evaluated in the
Appendix for the case when A2 0, but A3 > 0. The following expressions result:

2% cos g yfcos 0’ - n cos & + cos B (37

ltl'cose+|'| cos 6’ + N cos6 -cos 6

_cos6 -0 cosf+coséd
Pl =Coso+n cos6-cos&@ (38)
|r“)| _ _2cos# cosf -N n-cos@ (39)

“fcos 8" -cos 8 ¥ cosf+n n+cosé

g—qa«s“ /....
Bl
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—

These equations are valid for those angles of incidence 6 which satisfy the me‘l“alltle
8

A 22
§<1+Sin9<a‘ “0)

They can be put in a symmetrical form by the introduction of the angle 6o = arc cos n,

It is Interesting to examine these coefficients for the angle of incidence 6 = g, From
cos 6y = n follows sin 8 = A/2a, Then (35) takes the form:

sin 6 + sin ' = 2 sin 90. (41)
Therefore, if two of the angles 6, 6, 6 are equal, then all the three are equal. The ex.
pressions (37), (38), and (39) are of the indeterminate form 0/0 for 8 = 8¢,

cos § - cos fo

On evaluating lim cosG-cos 0

8+00

according to L’Hospital’s rule and noting that

d6’/dg = -1 when 6 = 6, one obtains Irl=1/2 for 6 = 6,. By comparing (23) and (36) it {g
clear tlhat Ir]and [r® | must be equal for § = 6, therefore [r? | = 1/2. A brief calculatiop
yields {t] = 1.

ENERGY RELATIONS

Since the experiments are generally so designed that energy flow and not amplitude ig
detected, it is of practical value to derive expressions for the former. The quantity
pr = |r|%is a correct measure of the relative power in the beam reflected according to the
law of geometrical optics, The quantity |t | is the maximum of the electric vector between
a pair of plates, the space variation being sinusoidal. Thus the average rate of energy
flow in the direction of the z-axis is injt|%2. The change in cross section of the beam at the
surface introduces a factor sec 8, therefore the relative transmitted power is:

1 2 _4ncosé 49
P, =3 NIt sec § =70 Cow (42)

for the range specified by (28) and

p_4ncos9 cos @’ -n cos 8 + cosé (43)
t (n+cos6B) cos6' +mn cosb -cosb

for the range specified by (40).

In general, there is a change in cross section in the case of the diffracted beam.
Therefore

() _cos @
r cosf

[§\]
kT, (44)

when ¢ satisfies (40) and p,® = 0 when 6 satisfies (28).,
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" The quantities p,,, pr(‘)and p; describe the division of power incident on a surface
element of an air-metal-glate medium interface of infinite extent. The conservation of
energy requires py + pl.(l + pt = 1. Figure 5 shows the variation of power division with
angle of incidence for 2a/x = 1,10, 1,20, 1.30 and 1.40.

When 6 = ' =0, the p,. = p.l'(l) = 1/4 and p¢ = 1/2; i.e., one-half of the energy is trans-
mitted into the metal-plate medium, the other half is equally divided between two beams
located symmetrically about the surface normal.

L. J. Chut previously deduced this division of power for 6 =6, by elementary con-
siderations, He wrote the incident wave in the form

$inc = CXP {ﬂc (z cos B, + X sin Bo)} = exp {iknz} exp {inx/a}

= exp {lnkz} cos 1x/a + i exp {iknz} sin 7x /a. (45)

Each term on the right of (45) corresponds to a wave carrying one-half of the energy. The
second term satisfies the boundary conditions within the metal-plate medium; it is the
transmitted wave. The first term represents a wave antisymmetric about the planex=2a/2;
it is responsible for the storage of energy at the interface and for the presence of reflected
waves, By elementary symmetry considerations one can deduce that the reflected waves
make equal angles with the surface normal and carry equal amounts of power,

It is of some interest to note that if the index of refraction of a metal-plate structure
is chosen large for the purpose of reducing reflection at normal incidence, the advantage
S0 gained is quickly lost when the same structure is illuminated at an angle which per-
mits the appearance of a diffracted beam. This is born out by Figure 5.

MEDIA BOUNDED BY TWO PARALLEL SURFACES

The theory described in the preceding section gives the reflection and the transmission
coefficients of the air-metal-plate interface. In any experimental test in which the energy
Propagating between the plates is not completely absorbed, it is necessary to take into
account the multiple reflections within the parallel-plate structure. A metal-plate medium
of finite uniform depth bounded by plane surfaces will be called a metal-plate slab. The
reflection from such a slab depends on the reflection coefficients of the front and of the
back surfaces and on the distance between these surfaces.

From the point of view of theory, the basic quantities are the coefficients describing
the air-metal-plate interface, The experimenter, however, always operates with slabs or
other shapes of fihite depth. It is possible to reduce greatly the effect of multiple reflec-
tions by constructing deep slabs containing absorbing wedges, but some uncertainty with
Tegard to the phase and magnitude of the back surface reflections still remains. It is
therefore desirable to deduce expressions describing the behavior of slabs, or metal-plate
Mmedia bounded by two parallel surfaces.

The corresponding problem has been solved in connection with dielectric sheets and
l'i?SSless transmission lines. Let r, be the reflection coefficient and t, the transmission

———

Y Oral communication; see Acknowledgments,
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-coefficient of the interface separating media 1 and 2 when the radiation is incident from

" medium 1 (usually air) and let r, and t; have similar meanings for a radiation incident
from medium 2, These quantities will in general depend on the angle of incidence 8. To
distinguish coefficients pertaining to the slab from those pertaining to single surfaces,
the former will be denoted by capital letters. One can show that the reflection coefficient
of a slab of medium 2 surrounded on both sides by medium 1 is given by the equation}

r,tt exp {—ZjG '

R=r, + ——s J » (46)
171 . r] exp{-Zjd,} -

where 6, is tixe phase delay between the two intersections of a normal of the slab with the

surfaces, In the case of a lossless dielectric slab of thickness d and of refractive index
none has 6, = dkz cos 82, where kz =nk; = 2111/7& and 6; is the angle of refraction.

Similarly, for the transmission coefficient one finds in the literature

. ttexp {- 15’}
Ti= {72 exp{-2j0} °

- (47)

: A few words of caution about the phases of these coefficients are in order. The coef-
ficient R refers to the front surface of the slab, If the plane of reference is chosen else-~
where, say in the plane of symmeétry of the slab, the phase of R must be altered. Equation
(47) gives the phase of the transmitted wave at (x, y, d + 0) with respect to the phase of the
incident wave at (%, y, 0), and not the change of phase produced by the introduction of the
slab into the path of the radiation, If the latter is desired, one has to multiply T: by

exp j6;, where 8; is the phase delay through a slab of thickness d made of medium 1. When

_medium 1 is air, which is usually the case, 6: = 2rd cos 6/x. '

Let the incident wave be of the form exp {-—jk(z cos 6 + sin 9)} fand let the slab be
bounded by the planes z = 0 and z = d. The reflected wave will then have the form
R exp {-jk(~z cos § + x sin 6) } and the transmitted wave in the region z > d will have the
form T exp {:jk(z cos 6 + x sin 9)}, where T = T el%, For slabs bounded on both sides
by the same medium, the coefficient T seems more fundamental than T,, although the latter
is more commonly found in the literature. T does not depend on a plane of reference; it
- compares the wave in the presence of the slab with the wave in its absence.

The principal difference between dielectric slabs and metal-plate slabs is that in the
case of the latter the single surface coefficients r,, r,, t, and t; are not real. The simple
equations connecting these quantities must be replaced by new ones, These will now be
derived for the case when the angle of incidence is such that there is only one reflected
beam, The discussion can be made general so as to include lossless dielectric slabs, and
discontinuities in transmission lines as well,

GEN'ERAL DISCONTINUITY RELATIONS

Let the plane z = 0 be a locus of discontinuity for the propagation of electromagnetic
Waves. This plane might be the boundary of two dielectric media, the surface of a

————

hief. 1, p. 355.
‘IThc time dependence is exp jut.

j
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metal-plate medium, a place where the dimensions of a transmission line undergo a suddep
change, etc. In general, the propagation constants on the two sides of the discontinuity wiy
be different. .

To simplify matters it is practical at this point to exclude multiple propagation ang
multiple reflection. While in the neighborhood of the discontinuity energy might be storeq
in the form of “higher” modes, it is assumed that far away from the discontinuity on either
side there is only one wave propagating toward and one away from the discontinuity, The
case of plane waves arriving at the plane z = 0 at oblique angles of incidence is includeq
in this discussion. ' To each angle of incidence 4 in the medium to the left of the discon-
tinuity the law of refraction orders an angle 6, in the medium to the right. The four waveg
to be considered together have the directions of propagation 9,, 7-§, 8,, 7~ . These
are shown in Figure 6.

MEDIUM 1 MEDIUM 2

Fig. 6 - Waves on an Inter!éce

It is appropriate then to observe the discontinuity from far away on both sides, so faf
that one has to deal with a pair of waves on each side. Formally such a system is identical
with a two-terminal pair network, The plane (or propagating) waves observed far from the
discontinuity can then be extended mathematically to the plane z = 0, and one might speak
of the amplitude of the plane wave at z = 0 even though a very complex field exists in the
latter neighborhood. When for large negative values of z one has a wave of the asymptotic
form b, exp {jkz , the quantity b, will be regarded as the amplitude of this wave at z = 0,
This is the customary procedure employed in discussion of discontinuities in waveguides.*

Let a, and a, be complex numbers proportional to the electric amplitudes at z = 0 of the
waves traveling toward the discontinuity and let_bl and b, have a similar meaning for waves
traveling away from the discontinuity. The subscripts are indicative of the media 1 (left)
and 2 (right). Let a be a vector with components a, and a, and let b have a similar meaning.
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On account of the linear character of Maxwell's equations and the boundary conditions the
vector b depends on a linearly:

besSa. )

¥

The scattering matrix 8 connects the incoming and the outgoing waves. It is easy to
see that
l'x ta
8= (49)
t, I3

It has been shown that when the vectors a and b are properly normalized, the matrix
$ is symmetrical.t . :

When no dissipation of energy takes place at the discontinuity the conjugate matrix S*
is the inverse of 8.1 In symbols:: '

ss* =1, (50)

where I is the identity matrix.§
The matrix equation (50) is equivalent to the following four scalar equations:
- \ '

|+t =1, (51)
I'J' +t te = 1, | 52)
rl t2* + tz rﬂt = 0’ (53)
t r* +r t* =0. 54)
From (51) and (52) follows: S 2 1
|0 - f sttrotpt=2Imt by, (55)

\___—__

18 G Rer. 4, b. 148. A matrix § is called symmetrical when it is identical with the
transposed matrix S obtained by interchanging rows of § with its columns. Proper
"°"§alization of the vectors a and b means that the factors of proportionality bet ween
l ir components and the electrical quantities are so chosen that 4 lagl®, 4 a,lz.
ibxl and 4 |b,] represent the mean energy flows in the four waves involved. = The
lues of vy and ro are indépendent of the mormalization and so is the product ¢, t,

fince (46) and (47) contain t, and t, only in the form of their product, so far as slabs
e concerned, the normalizatfon is quite immaterial.

LThe symbol * indicates the complex conjugate of the quantity it follows.

gc;: Ref. 4, p. 140. 4 direct proof of (%0) can be had by reversing the direction of

we‘ and thus interchanging incoming and outgoing waves. This change also replaces

'Gﬁ? element of § by its camplex conjugate, since time reversal is equivalent to the

to cacement of j by -j. One obtains in this way @ =~8*b which together with (48) suffices
establish (50). v

88 T YR N2 M VA PRI £ B
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The equality of the real number on the left of (55) with a pure imaginary on the right ip,
plies that they are both zero, therefore -

ol = Il (56)

and tit* is real. In fact, from (52) follows: tt* =1 - |nl* 2 0 because |r2| cannot
one, Therefore argt; =argt,. Let p= |r1| and T =]/f1tz; =V1 -p’. One may write: tee

s d -1 -j‘r'

-ip’ -ip” -
€ H=q (57

r=p yT,=pe »t, =qre
where the positive factor q depends only on the normalizationt of the amplitudes, From
(53) then follows:

exp j(-p’ +7')= -exp j(p” -T) =exp j(p” - T+ W). « (58)

-

Hence:
preprogTean (5

ThlS last relation is of fundamental importance. In the case of a dielectric sheet in ajr
p'=n, p”"=0and T'= 0. In the case of metal-plate media p’, p” and T’ depend on the ,
frequency. .

It has been assumed so far that the origin is located at the discontinuity. This condj.
tion will now be removed and the concept of discontinuity generalized in preparation for
the discussion of slabg.

The position of the origin is physically immaterial, a shift of the origin leaves the
magnitudes of the reflection and transmission coefficients unchanged. If a new coordinate
system is introduced with its ongin O’ at (0, 0, 1), then a1 exp(-jkx z cosf ) and az exp
(jk; z cos 6z) will be replaced by a) exp (-jkiz’ cos 0) and as exp (jkzz’-cos 62) respectively
where, on account of z = 2’ +1

withé: = k1 cos 8, ¢z = ka1 cosfz.] Similarly b and bz are replaced by by = by el®1 and
b? = bz e“J#a respectively, . )

The relations between the amplitudes in the two systems of reference can be expressed
in a compact form by the use of the matrix

_(em 6 ) . 6
pP- 0 e-j¢2 . (60)

t See footnote on p. 17. ' s

I When this theory is applied to discontinuities in tragnsmission lines 6 = & = o and by and
kaare the pertinent phase constants of prppagation.
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In fact ’ a’'=P'a, b’ = Pb, (61)

Then (48) becomes b’ = PSPa’, (62)

showing that the shift of origin changed the scattering matrix 8 into PSP. Elementary
matrix calculation results in:

p ( r, exp2j¢, t,expij(4 —¢z)) : :
= . . (63)
t, expj(¢, ~¢,)r, exp - 2jp,

In order that the preceding results be valid, it is not necessary that there should be a
single plane or point of discontinuity. It is sufficient, that in some part of the space, say,
for large negative z, there should be two plane waves progressing in opposite directions
(or in directions making angles 6; and 7 - 6, with the z-axis), and that in another part of
the space there should be a similar pair of waves. The amplitudes of these waves should
be linearly related and there must be no dissipation of energy so that every process is
time reversible, It is clear then that lossless discontinuities located in lossless media
can be lumped together into a single lossless discontinuity in the same way as a series of
four terminal networks can be lumped together into a single four terminal network. The
single discontinuity representing the entire system of discontinuities can then be shifted to
any convenient point. The matrices associated with a location of this composite discontin-
uity are the elements of the matrix family P S P, where S is the matrix associated with a
fixed location of the discontinuity with respect to the coordinate system.

L R,

The quantities ¢, and ¢, entering into the definition of P have to be determined with ) ;
some care since it is not at all clear (or relevant) what happens in the neighborhood of
the origin where the discontinuities might be located. A shift of the origin must be thought
of as a shift of the reference system of the observer, therefore in the equations ¢, = k; lcos 8
and ¢, = k; 1 cos 9: the appropriate values of k and ¢ are those which prevail at the site of ob-
Servation; i.e., far removed from the discontinuity. When, for example, the composite dis-
continuity consists of a dielectric, or metal-plate slab surrounded by air, then ¢, = ¢, since
the observation occurs in air, ke = ki, and the emergent beam is parallel to the incident one.
This situation prevails for a large class of discontinuities which deserve closer examination,

. When a discontinuity possesses a high degree of symmetry this fact is reflected in the
matrix § provided that the system of reference is properly chosen. In the case of a slab
(dielectric, or metal-plate) or a symmetric iris in a waveguide, the plane z = 0 may be
made to coincide with the plane of symmetry of the structure, A reversal of the positive
direction of z will then leave the matrix § unchanged., This reversal is equivalent to an inter-
change of the indices 1 and 2. Therefore r; = rz, t; = tz. From (59) then follows:

P '
[p" -7 = R (64)
This result is formalized as a theorem.

17?9 phases of the reflection and the transmission coefficients of a symmetric lossless
ducontinuity differ by 90° provided that the point of reference is the center of symmetry.

In experimental work it is often convenient to refer the phases of the waves involved
one of the physical surfaces of the discontinuity such as the first air-dielectric interface
the case of a dielectric sheet, Let S0 be the matrix associated with the symmetric dis-

Continuity with the origin located in the plane of symmetry and let d be the over-all thick-
Bess of the structure, When the origin is shified to the front surface, 1 = -d/2, the matrix

/
;

WY

APpr——

p—
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So is replaced by S = PSo P, with ¢, = ¢2 = -3kdcos 6, where k is the propagation cong
of the surrounding medium, From (63) follows: tant

s (rl e2j¢.l tﬂ
) ty ne 2”’1) (®5)

therefore T =7, and p’' =p - 2¢1 = p + dkcos 6o It is clear that the quantities p, v andy’
have a physical significance independent of the location of the reference plane, This fact
manifests itself mathematically by the invariance of these quantities under the transtop.
mation P S P with ¢, = ¢2.

A lossless symmetric discontinuity is electrically characterized by two quantitieg
say, pand 7, sinceT =§1 - p- and p’has to satisfy (64). The meaning of two electric’a]
parameters is easily understood. The physical parameters available for adjustment are
the series impedance and the shunt reactance, In the familiar case of a dielectric slap
there is no energy storage, therefore the shunt reactance in the equivalent circuit is zero,
This is, however, not the case for metal-plate slabs.

FORMULAS FOR METAL-PLATE SLABS

A slab of metal-plate medium surrounded by air is a symmetric, approximately loss.
less discontinuity and the results of the last few paragraphs apply. In order to test the
predictions of the Carlson and Heins theory it is sufficient to determine experimentallythe
magnitude of the reflection coefficient and the phase of either the transmission or the re.
flection coefficient.

With the aid of equations (57) and (59) one can derive from {46) by elementary manipu-
lations :

2p Isin ¢ |
IR |= —= ’ 66
Y1 - p9%+ 4p*sin® ¥ ( .)

where Y= p” + &. The absence of loss immediately justifies the equation

Iwl= V1-|R]%. (67)

From
1= ryeiT ' itexpi(d, - 5,) , ©68).
: 1-r} exp-jb,
it follows that
T’=2‘r’-61+62+arg{1—pzexp[-zj(p”+5,)]} . (69)

¢

“fActually there is an uncertainty in sign resulting in an uncertainty of m in the phase
of the refiection coefficient.
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But 1 - plexp [- 2j¥] = {(1 - p%) cosy + (1 + p%) sinw} exp [- Y]

and therefore

o arg {1 - p* exp [- 2i¢]} =y -y, (70)

where
2
Y’ = arc tan (—i—*’—%; tan zp), (11)

and the multiple valued function arc tan x is so chosen that yand ¥ lie in the same quad-
rant. From the last three equations and equation (59) it follows that

T'=p'+y' +7-0. (72)

The phase of R, if required, can now be computed with the aid of (64) which applies in this
case to the quantities denoted by capital letters.

AMPLITUDE COMPUTATIONS

The numerical computation of |r], |i| and |{*)| presents no difficulties, First the
limiting angle 6y, is foundfrom Figure 4. For?8 € 6y, Ir!is found from (26), |t| from (20)
and r(Y) = 0, For 6> 61,, equations (37), (38) and (3&3 apply. Some care has to be exer-
cised in the neighborhood of the point 6 =4, because all fractions involved are of the
form 0/0. This indeterminacy is easily removed by cancelling factors vanishing for
8 = 8, With the aid of (41) one may transform (38) to the form:

_ 1 (cos 8’ + cos 0)? 6 + 69
Tl =2 "Cos o+ cos 0 tan —5— cosec g . (73)

The same procedure is applicable to r()] and |t|. Figure 7 shows the values of p= Ir|
plotted against @ for selected fixed values of x = 2a/A. Table 1 gives the same information
in numerical form and in greater detail. While the shape of the curve p(f) resembles that
of the reflection coefficient of dielectric media for parallel polarization, the curves here
plotted do not reach the axis p=0. '

PHASE COMPUTATIONS

The numerical computation of the phases of the reflection and transmission coefficients
is a lengthy, difficult task, even in the simplest case when a diffracted beam is not present.
On account of limitations in manpower assigned to this project only those coefficients were
computed which have a direct connection with the experimental program undertaken. The
results appear at the end of this report.

Since the quantities p’, p” and T’ satisfy (59), it is sufficient to compute two of these,
Only p” enters into the expression for |R|, the magnitude of the reflection from a slab of
metal-plate material. This is the quantity most easily accessible to measurement andfor
this reason the major part of the computing effort has been devoted to the computation of
p” as a function of x = 2a/x and§. For normal incidence p’ was also computed as a func-
tion of x, This quantity will be considered first, Next p” will be calculated for normal
incidence, finally o” for oblique incidence. In this last case the angle of incidence willbe
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so restricted that no diffracted beam occurs. The value of p’ is given by equation (24)

~ In view of equation (9) this can be given the following form:

argK+ (-kcos@)=argV{(-kcos)+argW(-kcosd)- argU(-k cosg) - arg(-kcose +K)

-ak cos @ (In 2 - 1) 4, (74)

When there is only one reflected beam the functions V(-x), W(-x) and U(-x) are complex
conjugates of the functions V(x), W(x) and U(x) respectively, moreover -k cos 6 + K is negative,
therefore

arg K+' (-k cos 0) = —arg K+ (k cos 6) + 7. (15)

When there are two reflected beams (75) is again valid, but one has to verify it sepa-
rately for 6 > 6o and for 6 < 6. Consequently,

p'=2argK (k cos 6). (76)

It is now necessary to calculate arg K, (k cos ) for the case § = 0, In this case from

(13) and (14) follows: -
a =a_=Y1- (’ﬁ) =y (1)
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therefore V(w) = W(w). Also | Ap * i(ak/2m)|” =

It is practical to introduce the variable x defined as follows:

X= EE 2 (78)
T A
The values of x are limited to the interval 1to 2, For practical reasons the computations

are confined to the range 1.01 to 1.35. From (9) then follows:

arg K+ (k) = 2arg V(k) - arg U(k) +%(1n2 - 1), ' (79)
where
arg V(k) = -zl (arc sin -2?‘) . (80)
=_ % inx_ X 81
arg Uk) = - % (arc sin— n) . (81)
Therefore
~argK (k) =x(in2-1) —22 - (arc sin% -ﬁ) . (82)

The last sum can be written in the form arc sin(x/2) - arc sin(x/3) - x/6 +R(x), where
R(x) = f " (arc sinX --—:—) . (83)

The reason for this separation is that R(x) is small, In fact, while x varies from 1.01 to
1.35, R(x) varies from .002 to .004 and the entire expression (82) varies from ,33 to .47.

R(x) is calculated by expanding arc sin(x/n) inaninfinite series and then interchanging
the order of summations, This is permissible since all series involved are absolutely

convergent. From

. X_X lx’_g(x)“ 5 x)"
. arc sin— ==+ g(-ﬁ)-r 20 12 ( +aee (84)
it follows that
R(x):-lxa'ff(:ﬁ+~§x5 b hﬁ+ (85)
6 “n-4 ns 40 7 nty ns Lo ® .

The summations can now be carried out since the functionn(s) = E ( - n-Sis related

to the Zeta function of Riemann and its values for s = 3, 5, 7, ete, can be found with the aid
of the tables of the latter.
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. Table of the Auxiliary Function

1(s)
s 3 5 7 9 1
7 .010 4943 .000 7454 .000 0504 .000 0034 .000 0002
The numerical form of R(x) is:
R(x) = (17490%° + 550x°+ 22x" + x°+ ...) - 107, (36)
while
arg K+(k) =-,140 1861. X - arc sin% + arc sin—;-- R(x). (87)

In order to achieve the necessary symmetry for the calculation of p” for normal
incidence, the origin has to be moved to a point half-way between the edges, such as the
point Q in Figure 2. When this is done the expression for the phase of transmission
coefficient becomes in place of (21):

T’ =arg K+(k cos ) - arg K+(K). ' (88)
Therefore, in view of (59) and (76)
pr=2T'-p' +7=-2K (K + 7. - (89)

It is therefore necessary to calculate K;(x). For normal incidence the procedure is
similar to the calculation of K;(«). However, in the present case the convenient auxiliary
variable is y = nx = Kafr .

From:
s, 215 =1- () () 1-6h)
it follows that
. arg V(x) = ..El(arc sin—l-ty—},—%zg———%—, - -2%) . (90)

Moreover arg W( K ) = arg V(K), since in the case of normal incidence V(w) = W(w)..

Similarly:
.= wn_y o1
arg Uix) = - 3, (arc sin — n)' (81)
Hence
arg K (¥) = y(1n2- 1) - ¥ (" (arc sin 7;}%_—1 -%) ) (92)
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The $um is again split as follows:

arc sin y /3 --arc sin y/V8 - y/6 + S(y),

where
_ R n vy 3
| s = 2,7 fare sin =L -7} . (93)
Let
= =Y __1_"/2, 94
u = n(l - (94)

The binomial theorem gives:

3
u® =—!5 {1 +—g it 418y +} R (85)

These expansions may now be substituted in the series of arc sin u. Absolute conver-

gence of all series permits a rearrangement of the terms resulting in the following expression:

5 = By {F ot e ede

1l . 3 .
+ 3n§4(-)n y? {n’ +g 0 8 +...}+ (96)

3 3 (-)" y° 4n-* PRI SN
40 n:z=4 2
In a compact form

1 3
S(y) =g, Y+ 58,V +30 &V +eus (97)
where

gl =%n (3) + % n (5) + i% rl(7) Foee = 0005 5434!

gy =1 (3) +—§- n(s) + -135-11(7) +... =.011 7153,

Similay expressions give for g,, g, and g,, 8878, 679 and 46 ten-millionths respectively.

The numerical form of the remainder is:

S(y) = (55434y + 19525y° + 666y" + 30y” + 2y° + ...)+ 10", (98)

e
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Y

The final expression for K.+(«) is

arg K+(x) = —arc sin y/ﬁ + arc sin y/ Y8 -.140 1861 -S(yj. k%)
In order to obtain p” for 6 # 0, values of K,(x) for oblique incidence are requireq,
These were obtained by calculating the difference between K,(x,6) and K,(x, 0) where
latter is the function designated heretofore by K, (). the
Since U(w) does not depend on 4
_ arg K+(x,9) - arg K+(x, 0) = arg V(x, 6) + arg W(k, ) - 2 arg V(x, 0), (100)
From (13) it follows that

iaxpf _ ( aksine)’ 1
'An + 21m! =\-"3m T 4n®° (101

Let v = (ak/7)sin @ = x sin @, then

=_ ¥ y . )
arg Vix,0) =- z (arc sin o1 —Zn) . (102)
and
arg W, 0) = - z (arc sin Vo 1 -2-) . (103)

-1
Introduce the function f(v) = arc siny [(Zn +v)? - 1] 2. The right side of (100) thenbecomes
-3:;1 fn(v) + fn(-v) - 2fn (0)-

The summand is the second difference of the function f,(v). It is equal to fn (O)v
plus terms of higher order in v:. But f; (0) is approximately y/4n®, when 1 and y* can
be neglected in comparison to 4n®. In the range of interest y<1. Therefore, when N is such
that 1 <<4N°, the following approximation holds

it
ns

. M+ (V) =21 (0) = %2 °z°N . (104)

The terms corresponding to n = 1, 2, 3 and 4 were computed on the automatic comput-
ing machine of the Operational Research Branch for angles of incidence § ranging from 0
to 35° in 5° intervals. The remainder term

2 e
I 2,0 = .006099yv* (105)

was then added. The values of p” - 7 = -2 K;(&,0 ) are tabulated to four places, except
for 0 = 35° in which case only three place accuraty is available.

THE TABLES AND THEIR USE

Table 1 contains p = Ir| as a function of x = 2a/) from 1.01 to 1,35 and the angle of
incidence 8 from 0° to 60°. In Table 2 the values of p”- 7 are tabulated for x = 1.01
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to 1.35 and fore ¢ to 35° the approximations adopted not being satisfactory for large
values of 6.

{
4
]
:

A more extensive table was prepared for the case of normal incidence with values of
x ranging from 1.01 to 1.35. This presentation (Table 3) also contains the functions p’/27
and p”/27 which are useful in practical computations.

-

As an example for the use of these functions one might consider the computation of _ 3 4
the phase change in transmission through a sheet.

Equation (72) can be put in the following form: ; {

(106)

I
21

M"cl
+
(N
1
[= %
Q
[=]
7]
=Y
+
b
+
E

Here

1_ 107 '
21r A’ (107) , ! {

since the rays are constrained in the metal-plate medium so that 6. = 90°. Having the
angle in the form /27 is convenient, for  is often quite large.

The difference Y’ - Y is generally small. It can be computed quickly as follows: Let ;
F=(1+p?)/(1 - p?), then according to (71) tan y/= F tany, therefore . ‘

’ ~ ’ _ tany’-tan ¥ _ F-1
Y -v=tan -¥) = [ i fany " cotan y s Flan § (108)

provided F - 1 is small.

- No detailed tables were prepared for the power division at the air-metal-plate inter-
face. Figure 5 contains the available information.

Table 4 gives the direction of the first diffracted beam as a function of x and the angle
of incidence. It also contains the angle 4 = arc cos n as a function of x. This is the an-
gle of incidence for which the interesting equidistribution of power noticed by L. J. Chu
takes place.
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TABLE 1
Magnitude of the Reflection Coefficient ¢ for Varying Angle of Incidence

4?57: _ 0 (] ] o ]
2l x=8 | ¢=0 5 10 15 20 25 308
1.01 7538 | .7530 7505 7462 7401 71318 7210
y 1.02 6708 | 6697 6665 6611 6533 6428 629
Pl 1.03 6134 | 6122 | .6086 6025 | 5037 | 5818 | 5ges
R 1.04 5690 | 5677 5638 5572 5476 5348 | aypc
7 1.05 5327 | 5313 5272 5201 5100 14965 4708
Vol 1.06 5019 | 5005 4961 4888 4782 4642 4462
ol 1.07 4752 | 4737 4692 4617 4508 4362 | 417
SRR 1.08 4517 | .4502 4456 4378 4266 AL17 3026
A 1.09 4307 | .4202 4245 4165 4050 .3898 3704
SRR 1.10 4118 .4102 .4055 .3973 .3857 .3702 .3504
&1 f
o 111 3947 | .3931 3882 3799 3681 3524 3323
g 1.12 3790 | 3774 3724 3640 3520 3361 3158
ol 1.13 3646 | .3629 3579 3494 3373 3212 3008
SRR 1.14 3512 | .3495 3445 3359 3237 3074 | 2867
RN 1.15 3388 | .3371 3321 3234 3110 2946 2737
Sy 1.16 3273 | 3256 3205 -3118 2093 2827 2617
| 1.17 3166 | .3148 3096 3009 2883 2716 2504
: 1.18 3065 | .3047 2995 2907 2780 2612 2309
: 1.19 2970 | .2052 | .2900 2811 2684 2515 2301
| 1.20 2880 | .2863 2810 2721 2592 2423 2208
i
1.21 2796 | 2718 2725 2635 2507 2336 2120
P 1.22 2716 | .2698 2645 2555 2426 2255 2038
1.23 2640 | 2622 | .2569 2478 2349 2177 | 1959
1.24 2568 | .2550 2497 2406 2276 2103 1885
1.25 2500 | .2482 2428 2337 2206 2034 1815
1.26 2435 | 2417 2363 2271 2140 1967 | L1748
1.27 2373 | .2355 2300 2209 2077 1904 1684
1.28 2314 | .2295 2241 2149 2017 1843 1623
1.29 2257 | .2239 2184 2092 1960 1785 1564
1.30 2203 | .2185 2130 2037 | .1905 | .1730 1509
1.31 2151 | .2133 2078 1985 1852 1677 1455
1.32 2101 | .2083 2028 1935 1802 1626 1404
1.33 2053 | .2035 1980 1887 1754 1578 1355
| 1.34 2007 | .1989 1934 1841 1707 1531 | %1737
s 1.35 1963 | 1945 .1890 11796 1662 1486 | 1980

*Second lobe present.

i
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TABLE 1
-continued-

x 35° 40° 45° 50° 55° 60°

1.01 1074 .6903 .6687 6415 .6068 .5616

1.02 6122 .5908 .5641 .5307 .4886 .4346

1.03 .5474 .5235 4938 4569 4107 .3521

1.04 .4978 41722 .4405 4012 .3524 .2909

1.05 4575 4306 .3974 .3565 .3058 .2423

1.06 4236 .3957 .3614 .3193 .2672 .2024

1.07 .3944 .3658 .3306 .2875 .2344 .1686

1.08 .3688 .3395 .3037 .2598 .2059 * 2801

1.09 .3461 .3163 .2798 .2353 .1808 *_3370

1.10 .3258 .2955 .2585 .2135 *.1849 * 3771

11 .3073 2767 .2393 1939 *.2709 * 4086

1.12 .2905 ,2596 2218 1761 * 3150 * 4345

1.13 .2751 .2439 .2059 1598 *_3479 * 4566

1.14 - .2609 ,2294 1912 * 2347 * 3747 * 4758

1.15 .2478 .2161 1776 *.2776 * 3973 * 4027

| L8 .2356 ,2037 .1650 * 3085 *.4169 * 5078
| L1t .2242 1921 .1533 * 3335 * 4342 * 5214
118 .2135 1813 * 2227 * 3547 * 4497 * 5338
1.19 .2036 1712 *,2582 * 3732 * 4638 * 5452

1.20 1942 1617 * 2845 * 3806 *.4766 * 5557

. 121 .1853 1528 * 3062 * 4044 * 4883 * 5654
P 122 1770 *.1793 *,3248 * 4179 * 4992 * 5744
1.23 .1690 * 2215 *,3412 * 4302 *.5093 * 5829

1.24 1615 *,2481 * 3559 *.4416 * 5187 *_5008

125 1544 *.2691 *,3693 * 4522 * 5275 * 5982

1.2¢ 1476 * 2870 * 3815 * 4621 * 5358 * 6053

v 127 1412 * 3026 * 3928 * 4713 *.5436 * 6120
1.28 *.1948 * 3165 * 4033 - * 4800 * 5510 * 6183

1.29 . *.2206 * 3292 * 4131 * 4382 * 5581 * 6244

L30 * 2402 *,3408 *.4223 * 4960 * 5647 * 6300

}-31, * 2566 * 3515 * 4310 * 5033 * 5711 * 6356

1-32 * 2709 * 3615 *.4302 * 5104 * 5772 * 6408

1'33 * 2837 *_3709 * 4469 * 5171 * 5830 * 8458

1-34 * 2053 * 3797 * 4543 * 5234 * 5886 * 6506

_'35\ *.3060 *.3880 * 4614 * 5206 * 5939 * 6553

*Second lobe present

s
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TABLE 2
Phase of the Back Surface Reflection Coefficient

Table of p”- s (in radians)

R x | 6=0° 50 10° 15° 20° 25° 30° | o

[ —1.35
* 1.01 | .1049 .1084 1107 .1180 1284 1425 .1609

1.02 | .1490 1511 1573 1679 .1832 .2038 .2307 184

1.03 | .1832 .1858 1937 .2070 .2265 2527 .2869 '§§5

1.04 | .2124 .2155 .2248 .2408 .2639 .2952 .3363 - '38;

1.05 | .2384 | .2419 | .2527 | 2710 | .2977 3340 3818 4q

1.06 | .2622 .2662 .21782 .2990 .3292 .3704 4248 498

. - 107 | .2843 .2888 .3023 .3253 .3590 4051 4663 547

n 1.08 | .3052 | .3101 .3249 .3503 .3875 .4586 .5067 508

. 1.09 | .3250 .3303 3465 | .3742 4150 4712 .5465 848

L 1.10 | .3440 .3498 .3673 .3975 4418 | .5032 .5861 .808

P 1.11 | .3623 .3685 3874 | .4200 .4681 .5348 .6256 N4

1.12 | .3799 .3866 .4089 .4420 .4939 .5662 .6652 .802

z 1.13 | .3970 4042 .4259 4636 5194 .5976 .7052 855

b 1.14 | 4137 4213 4445 4848 .5447 .6290 7458 011

| 1.15 | .4300 .4381 4628 .5058 .5700 .6605 1872 968

1.16 | .4460 .4546 .4809 5265 .5951 .6923 .8293 1.028

1.17 | .4616 41708 .4986 .5472 .6202 1245 8727 | 1.001

1.18 | .4770 .4866 .5162 5677 .6454 1571 9174 1.158

'1.19 | .4921 .5022 .5335 .5881 .6707 7902 .9636 1.229

1.20 | .5071 5177 .5508 .6085 .6964 .8240 1.0115 | 1.308

1,21 | .5218 5331 .5678 .6289 1222 .8587 1.0615 1.389

1.22 | .5364 .5482 .5849 .6493 .7483 .8941 1.1138 1.480

1,23 | .5508 5632 .6018 .6698 1147 .9305 1.1688 1.583

1.24 | .5650 5782 .6187 .6904 .8015 |- .9680 1.2271 1.701

1.25 | .5792 .5930 .6356 J113 .8288 | 1.0069 1.2893 1.844

0126 | .5932 .6077 .6525 7323 .8567 | 1.0471 1.3560 2,032 -

1.27 | .6072 | .6223 .6693 7532 .8850 | 1.0888 1.4282 2.391

1.28 | .6211 .6369 .6862 71744 9140 | 1.1323 1.5074 2,537

1.29 | .6349 8515 .7031 7960 9437 1.1781 1.5963 2.523

1.30 | .6486 .6660 .7200 .8178 9743 | 1.2261 1.6976 2.509
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TABLE 3
Tables for Normal Incidence
-22 , o’ , P

x= A n P P i; pr-T S
1.01 14037 7538 -,6589 -.10487 1049 51670
1.02 19706 .6708 -.6663 -.10605 1490 52371
1.03 .23959 6134 -.8738 -.10724 1832 52916
1.04 .27467 5690 -.6813 -.10844 2124 .53380
1.05 .30491 5327 -.6889 -.10964 2384 53794
1.06 33167 .5019 -.6955 -.11068 2622 541173
1.07 35575 4752 -.7041 -.11206 .2843 .54525
1.08 37770 4517 -7117 -, 11327 .3052 54857
1.09 .39789 .4307 -.7194 -.11450 3250 .55173
1.10 .41660 4118 -7271 -.11573 3440 55475
1.11 .43403 .3947 -.7349 -,11696 .3623 .55766
1.12 45034 .3790 -.7427 -, 11821 3799 56047
1.13 46567 3646 - -.7506 -.11946 3970 56319
1.14 48014 3512 -.7585 -.12071 4137 .56585
1.15 49382 .3388 -,7664 -.12197 4300 .56844
1.16 50679 .3273 -.7744 -.12324 .4460 57098
1.17 51912 3166 -,7824 -.12452 .4616 57347
1.18 .53086 .3065 -.'71905 -.12581 A770 57592
1.19 .54207 2970 -.7986 -.12710 4921 57832
1.20 55277 .2880 -.8087 -.12840 .5071 .58070
1.21 56302 .2796 -.8150 -.12971 5218 .58305
1.22 57283 2716 -.8232 -.13102 5364 .58536
1.23 58225 .2640 -.8316 -.13235 5508 58766
1.24 59130 .2568 -.8399 -.13368 .5650 .58993
1.25 .60000 2500 -.8484 -.13502 5792 59218
1.26 .80837 .2435 -.8569 -.13637 .5932 59442
1.27 61644 2373 -.8654 -.13773 6072 59664
1.28 .62422 2314 -.8740 -.13910 6211 59884
1.29 63172 2257 -.8827 -.14048 .8349 .60104
1.30 .63897 .2203 -.8914 -.14187 .6486 60323
1.31 84597 .2151 -.9002 -.14327 .6623 .80540
1.82 85275 .2101 ~-,90901 -.14468 6759 .80758
1.33 .85930 .2053 -.9180 -.14610 6895 60974
1.34 .66564 2007 -.9270 -.14753 L7031 61191
1.35 67179 .1963 -.9360 -.14898 L7167 .61406
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i
| TABLE 4
Azimuth of the First Diffracted Beam and the Angle
6, = arc cosm,
2a Values of 6’ in degrees o=
: x=== 0 -
: A ® | §=3° 9=40°| 6-45°| 6 -=50° 6 =55 o -=60° 6o
: 1.05 | 7225 86.81
1.06 | 70.63 78,68
. 1.07 | 69.16 | 7433
o 1.08 67.81 ) 80.34 71'00
1.09 66.55 75.66 68.21
il - 1.10 | 65.38 87.48 72.20 85.77
ERAI 1.11 | 64.28 79.31 69.35 63.57
b : 1.12 63.23 75.14 66.88 61.57
1.13 62.25 71.95 64.67 59.72
L i 1.14 61.31 81.24 69.27 62.67 58.00
SRR 1.15 | 60.41 ' 76.68 | 66.92 60.82 56.39
HH b 1.16 59.55 73.35 64.82 59.11 54.87
51 - 1.17 58.73 70.62 62.91 57.50 53.43
I L 1.18 57.94 81.04 68.26 61.14 55.99 52.03
1.19 57.18 : 76.80 66.15 59.49 54.55 50.75
TRl
Lo 1.20 | 56.44 73.65 | 64.24 | 57.94 53.19 49.50
“' ! 1.21 55.74 71.05 62.48 56.49 51.89 48.30
i f 1.22 55.05 85.24 | 68.79 60.84 55.10 50.65 - 47,14
1.23 54,39 79.49 66.77 59.31 53.79 49.46 46.03
1.24 53.75 75.96 64.93 57.87 52.54 48.32 44,96
1.25 53.13 73.18 63.24 56.51 51.34 47,22 43,92
1.26 52.53 70.82 61.67 55.21 50.19 46.16 42,92
1.27 51.94 68.75 60.19 53.98 49,08 45,14 41.95
1.28 51.38 | 81 .474 66.88 58.80 52.79 48,03 44,15 41.01
1.29 50.82 77.64 65.18 57.49 51.66 46.99 43.19 40.10
1.30 50.28 4.7 63.60 56.24 50.57 46.00 42,26 39.21
1.31 49,76 72.39 62.12 55.05 49,52 45,04 41.35 38.35
1.32 49.25 | 70.32 60.73 53.91 48,51 44.11 40.48 317.51
1.33 48.75 68.46 59.43 52.81 47.54 43.20 39.62 36.62
1.34 48.27 | 66.77 58.18 51.76 46,59 42.33 38.79 35.89
1.35 47.79 | 65.22 57.00 50,75 45.68 41.48 37.99 35.11
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APPENDIX
Calculation of the Magnitude of the Reflection and Transmission Coefficients

In order to find the magnitudes of certain coefficients occurring on pages 8-11, it is
necessary to evaluate the absolute value of the complex function K, (w) and its derivative
for certain special values of the variable w, In particular, |[K +(w) |is needed for w=k cos@
and x, while |[K/(w) | is needed for w = k cos 6 and -k cos §’. Direct substitution in the
infinite products defining K, (w) leads to extremely cumbersome expressions; a somewhat
different method is therefore preferable,

The functions K, (w) and K_(w) are defined by (9) and (15). On multiplying their
absolute values the following equation results:

" a(w+kcosf w- || Viw)||Wiw)U(-w)
|K+(w) K'(W)I 20w -+- k cos 8 w+K||V(wHW-w)U(w) | (14)

In view of (8) the left side of (1A) might also be written as | f(w) [K +(w)] 3

‘When w is real, the last factor on the right of (1A) is always one, since W(-w) = W(w)"
and U(-w) = U(w)*. When A, is real then also V(- w) = V(w)* and in this case

)] K, ()= § | Bt pos :;:‘ ' o

When A, is imaginary but A, is real, for every real w
l‘ Viw)}_ kcosf'+w
V(-w) |k cos 9’ -w

, _a |w+kecos 8] |w-«k}|w+k cos ¢ 3A
lf(w)l |K+(w)r'2 f[w-kcosaliw+kl|w -k cos 6"* (34)

To derive an expression for KK, (k cos 6)|, it is only necessary to multiply (2A) or (3A)
by (w - k cos ) and then let w tend to k cos 8. According to I/ Hospital’s rule

and thérefore

lim f(w)(w - k cos 0) = 1/ak cos 4,
w9y k cosg

therefore

kcosf -x (44)

2_ .32 .2
|K+(k cos 6)]*= a*k®cos® ¢ X eos b ox

When Al is real and

k cos §-x cos § + cos 6’
k cos 6+ K cos @ - cos 6’ (5A)

|K+(k cos 0) = a’k* cos? 9

¥hen A, is imaginary.
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The omission of the absolute value signs on the right of (4A) and (5A) is justified ip vie
of the fact that cos 6> n for real A, and that for imaginary A, N = cos 9 lies between w
cos 6 and cos 8’ as seen from (41),

The calculation of [K +(M)] requires the evaluation of the limit;

f(w) | 1 1 . sina Vk?_ w?
lim = lim
wsk WK YR2_y*cosa Vk%-k® - cos (ak sin §) V% W-K .

Since k% - k2 = 7%/a? this limit becomes

a’x 1 )
"7 1+ cos(ak sin 9)
Therefore
2
2__7m° _kcosB+w
|K+(x)| = 7277 k cos 0 K [1 + cos (ak sin 0)] (64)
when A, ig’ real and
2
2___7__ kcos8 +x k cos 0'+k
K ()]2= 2222 k cos 6 K k cos 87K @+ cos (ak sin 9)] (7A)
when A is imaginary.
Since K, (w) has a simple root at w = -k cos 6
K'( k 6) ——-—-—K w)
| ¢os ,: -)—kclfalle w+kcos@ (84)

Equations (2A) and (3A) are divided by (w + k cos @) and the left side is written in the
form

K (w) 7°
f(w) (w + k cos 8) [—‘““9]

w + k cos

From"H knm (w+ k cos 8) f(w) = -1 /a k cos 6 then follows:
cosg

a®k cos 9 +«
IK ( k cos 9)’2 a‘m (QA)

when A, is real and

*k cos §+ cos 6 - cos 8’
k

’ 2 _ 2
IK+(-k cos 9)f° = 4 k cos 8-k cos 6 + cos 8’

(10A)

when A | is imaginary.

The calculation of K;(—k cos f') is similar, In this case

lim f(w)(w +kcosf’)=-1/ak cos §’,
wy-kcos ¢’

—
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Hence

cos §'+ k cos 68’ -cos 6 | (11A)

2
np -2k
‘K+(-'k cos 6 )l = 4 k cos 8’-K cos §’ + cos @

From (23), (4A) and (9A) follows

k cos 8 -«
Ir =% cos 6 +& (124)
for real A, while for imaginary A, (23), (5A) and (10A) give
II,I_kcose.x cos 6 + cos 6’ | (13A)

"k cos 6 +k cos 6 - eos 6§’

Expressions for It! and rw are obtained in the same way. The formulas (20), (37) and
(39) result.
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